Computing global visibility maps for regions on the boundaries of polyhedra using Minkowski sums

نویسندگان

  • Min Liu
  • Yu-Shen Liu
  • Karthik Ramani
چکیده

A global visibility map is a spherical image built to describe the complete set of global visible view directions for a surface. In this paper, we consider the computation of global visibility maps for regions on the boundary of a polyhedron. Both the self-occlusions introduced by a region and the global occlusions introduced by the rest of the surfaces on the boundary of the polyhedron are considered for computing a global visibility map.We show that the occluded view directions introduced between a pair of polyhedral surfaces can be computed from the spherical projection of the Minkowski sum of one surface and the reflection of the other. A suitable subset of the Minkowski sum, which shares the identical spherical projection with the complete Minkowski sum, is constructed to obtain the spherical images representing global occlusions. Our method has been successfully tested on many CADmodels. It extends the previous methods for computing global visibility maps using convex decomposition, and it exhibits a better

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection

Computing the Minkowski sum of two polyhedra exactly has been shown difficult. Despite its fundamental role in many geometric problems in robotics, to the best of our knowledge, no 3-d Minkowski sum software for general polyhedra is available to the public. One of the main reasons is the difficulty of implementing the existing methods. There are two main approaches for computing Minkowski sums:...

متن کامل

A Simple Method for Computing Minkowski Sum Boundary in 3D

Computing the Minkowski sum of two polyhedra exactly has been shown difficult. Despite its fundamental role in many geometric problems in robotics, to the best of our knowledge, no 3-d Minkowski sum software for general polyhedra is available to the public. One of the main reasons is the difficulty of implementing the existing methods. There are two main approaches for computing Minkowski sums:...

متن کامل

Adapting polytopes dimension for managing degrees of freedom in tolerancing analysis

In tolerancing analysis, geometrical or contact specifications can be represented by polytopes. Due to the degrees of invariance of surfaces and that of freedom of joints, these operand polytopes are originally unbounded in most of the cases (i.e. polyhedra). Homri et al. proposed the introduction of virtual boundaries (called cap half-spaces) over the unbounded displacements of each polyhedron...

متن کامل

Exact Minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces

We present the first exact and robust implementation of the 3D Minkowski sum of two non-convex polyhedra. Our implementation decomposes the two polyhedra into convex pieces, performs pairwise Minkowski sums on the convex pieces, and constructs their union. We achieve exactness and the handling of all degeneracies by building upon 3D Nef polyhedra as provided by Cgal. The implementation also sup...

متن کامل

Discrete Critical Values: a General Framework for Silhouettes Computation

Many shapes resulting from important geometric operations in industrial applications such as Minkowski sums or volume swept by a moving object can be seen as the projection of higher dimensional objects. When such a higher dimensional object is a smooth manifold, the boundary of the projected shape can be computed from the critical points of the projection. In this paper, using the notion of po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009